Zener tunneling and photocurrent generation in quasi-metallic carbon nanotube pn-devices.

نویسندگان

  • Moh R Amer
  • Shun-Wen Chang
  • Rohan Dhall
  • Jing Qiu
  • Stephen B Cronin
چکیده

We investigate the electronic and optoelectronic properties of quasi-metallic nanotube pn-devices, which have smaller band gaps than most known bulk semiconductors. These carbon nanotube-based devices deviate from conventional bulk semiconductor device behavior due to their low-dimensional nature. We observe rectifying behavior based on Zener tunneling of ballistic carriers instead of ideal diode behavior, as limited by the diffusive transport of carriers. We observe substantial photocurrents at room temperature, suggesting that these quasi-metallic pn-devices may have a broader impact in optoelectronic devices. A new technique based on photocurrent spectroscopy is presented to identify the unique chirality of nanotubes in a functional device. This chirality information is crucial in obtaining a theoretical understanding of the underlying device physics that depends sensitively on nanotube chirality, as is the case for quasi-metallic nanotube devices. A detailed model is developed to fit the observed I-V characteristics, which enables us to verify the band gap from these measurements as well as the dimensions of the insulating tunneling barrier region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competing Photocurrent Mechanisms in Quasi-Metallic Carbon Nanotube pn Devices.

Photodetectors based on quasi-metallic carbon nanotubes exhibit unique optoelectronic properties. Due to their small bandgap, photocurrent generation is possible at room temperature. The origin of this photocurrent is investigated to determine the underlying mechanism, which can be photothermoelectric effect or photovoltaic effect, depending on the bandgap magnitude of the quasi-metallic nanotube.

متن کامل

Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

Articles you may be interested in Single carbon nanotube photovoltaic device Scanning photocurrent and photoluminescence imaging of a frozen polymer p-n junction Appl. Large-signal and high-frequency analysis of nonuniformly doped or shaped pn-junction diodes Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes Appl.

متن کامل

Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic.

We report surprisingly efficient photocurrent generation at individual single-walled carbon nanotube (SWNT) /poly(3-hexylthiophene-2,5-diyl) (P3HT) junctions. Contrary to previous prediction, both semiconducting SWNTs (s-SWNTs) and metallic SWNTs (m-SWNTs) function as efficient hole acceptors. By active tuning of SWNTs' Fermi level, we confirm that P3HT p-dopes both s-SWNT and m-SWNT, and the w...

متن کامل

Optoelectronics in Carbon Nanotube Photodiodes and Graphene Hetero-Interface Devices

The excellent thermal, electronic and optical properties of carbon nanotubes (NTs) and graphene strongly motivate the use of these materials in optoelectronic devices. Here, we review our recent investigations of NT and graphene optoelectronic devices. By studying individual NT and graphene devices, we aim to uncover novel physical phenomena and establish a foundation for future applications in...

متن کامل

Zener quantum dot spin filter in a carbon nanotube

We predict and analyse a novel spin filter in semiconducting carbon nanotubes. By using local electrostatic gates, the conduction and valence bands can be modulated to form a double-barrier structure. The confined region below the valence band defines a Zener quantum dot, which exhibits resonant tunnelling. The resonances split in a magnetic field to make a bipolar spin filter for applications ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 13 11  شماره 

صفحات  -

تاریخ انتشار 2013